师资

戴建生
讲席教授
英国皇家工程院院士、ROBOTICA Editor-in-Chief
南科大机器人研究院院长
daijs@sustech.edu.cn

戴建生,英国皇家工程院院士(FREng), IEEE Fellow, ASME Fellow, RSA Fellow, IMechE Fellow。国际机器人旗舰期刊 Robotica Editor-in-Chief(主编),Mechanism and Machine Theory 方向主编,高等教育出版社“机器人科学与技术”丛书主编。长期从事理论运动学、机构学与机器人学的基础理论与应用研究,在旋量代数、李群、李代数等领域具有深厚的数学基础和造诣。在变胞机构、可重构机构与可重构机器人等各类机器人机构,以及这些机构在康复与制造技术领域应用上做出了许多开创性与国际领先的工作。2015年获得 ASME “机构学与机器人学终身成就奖”,为该奖设立41年来第27位获奖者。2020年获得 ASME “机械设计终身成就奖”,为该奖设立 62年来第58位获奖者。2020年获奖词:为建立可重构机构领域和变胞机构子领域做出了开拓性与奠基性贡献;并通过研究、应用、教学和服务对机械设计产生了持久性影响,弥合了通用但昂贵的机器人与高效但不灵活的机器之间的鸿沟。

戴院士于2021年获得天津市(省部级)自然科学一等奖(第一名)。除了2015年与2020年两个终身成就奖外,戴院士还获得了多项国内外学术奖励与荣誉以及多项国际期刊最佳论文奖,包括“2018年 Crossley Award”等5项最佳期刊论文奖、“2019年 AT Yang Memorial Award”理论运动学奖等9项最佳会议论文奖、伦敦国王学院2010年度“博士指导卓越奖”(1人/3200人)、2012年 ASME 杰出服务奖、中国机构学学会2012年“学术创新奖”和“国际学术交流奖”等12项个人奖。

戴院士发表SCI论文400余篇,出版英文著作4部、中文著作6部含在高等教育出版社知名品牌系列“现代数学基础”丛书中出版与再版的《旋量代数与李群、李代数》,在“机器人科学与技术”丛书中出版与再次印刷的《机构学与机器人学几何基础与旋量代数》以及获国家科学技术学术著作出版基金资助出版的《可重构机构与可重构机器人》。


戴建生院士部分研究工作情况、视频及创新展示,请点击这里 https://nms.kcl.ac.uk/jian.dai/

 
研究领域:
◆ 理论:理论运动学,旋量代数与李群、李代数,机构学与机构理论、
◆ 机构:变胞机构,可重构机构与可重构机器人
◆ 操作:机器人操作,机器人灵巧手
◆ 应用:康复机器人,服务机器人,足式机器人
◆ 制造:机器人与智能制造
 
学习经历:
◆ 1989.06-1993.05   英国索尔福德大学,博士
◆ 1982.09-1984.12   上海交通大学,机械工程硕士
◆ 1978.09-1982.07   上海交通大学,机械工程学士
 
工作经历:
◆ 2022.01-现在       欧宝ob体育app(中国)有限公司官网,机器人研究院院长
◆ 2022.01-现在       欧宝ob体育app(中国)有限公司官网,机械与能源工程系,讲席教授
◆ 2007.09-2021.12   英国伦敦国王学院,讲席教授
◆ 1999.09-2007.08   英国伦敦国王学院,准教授
◆ 1997.09-1999.08   英国桑德兰大学,高级讲师
◆ 1996.01-1997.08   英国联合利华利物浦研究中心,研究员
◆ 1993.05-1995.12   英国索尔福德大学,博士后
 
学术兼职 :
◆ Robotica, Editor-in-Chief
◆ Mechanism and Machine Theory, Subject Editor
◆ ASME Transactions: Journal of Mechanical Design, Associate Editor
◆ Journal of Mechanical Engineering Sciences, Associate Editor
◆ IFToMM 英国区主席

所获荣誉:
◆ 2021年,入选英国皇家工程院院士
◆ 2020年,获得“ASME 机械设计终身成就奖”,1958年后第58位
◆ 2019年,获得“AT Yang 理论运动学”奖
◆ 2018年,获得“Crossley Award”奖
◆ 2017年,入选国际电子电气工程师协会会士(IEEE Fellow)
◆ 2015年,获得“ASME 机构学与机器人学终身成就奖”,1974年后第 27位
◆ 2013年,获得“中国机构学创新奖”
◆ 2011年,入选美国机械工程师协会会士(ASME Fellow)
◆ 2011年,获得“Best Paper Award”(1/182),Journal of Systems and Control Engineering
◆ 2010年,获得“博士指导卓越奖”(1/3200),伦敦国王学院
◆ 2009年,获得“SAGE Award”(1/178),Journal of Systems and Control Engineering
◆ 2007年,入选英国机械工程院会士(IMechE Fellow)
◆ 1998年,获得 ASME 第25届机构学双年会最佳论文奖(1/182)
◆ 1995年,英国注册(特许)工程师,欧洲注册工程师

代表性论文:

著作:
◆E. Rodriguez-Leal and J.S. Dai, Evolutionary Design of Parallel Mechanisms: Kinematics of a Family of Parallel Mechanisms with Centralized Motion, Lambert Academic Publishing, Saarbruecken, Germany, 2010, ISBN: 3838378768.
◆C. Qiu and J.S. Dai, Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach, Springer, London, 2020, ISBN: 978-3-030-48312-8
◆L. Cui and J.S. Dai, Sliding-Rolling Contact & In-Hand Manipulation, World Scientific Publishing, London, 2020, ISBN:978-1-78634-842-5.
◆戴建生 著,《旋量代数与李群李代数》,“现代数学基础”丛书第 42部,第70部,高等教育出版社,2014年第一版,2020年第二版(37万字/375页)。  
◆戴建生 著,《机构学与机器人学的几何基础与旋量代数》,“机器人科学与技术”丛书第1部,高等教育出版社,2014年第一版,2018年再次印刷(58万字/488页)。
◆戴建生,康熙 ,宋亚庆,魏俊 著,《可重构机构与可重构机器人 — 分岔演变的运动学分析、综合及其控制》,“国家科学技术学术著作出版基金”资助出版,高等教育出版社(64万字/516页)。

理论:
◆L. Wu, and J.S. Dai, 2021, A novel ortho-triplex tensegrity derived by the linkage-truss transformation with prestress-stability analysis using screw theory, ASME J. Mech. Des., 143(1): 013302.
◆Z. Fu, J. Pan, E. Spyrakos-Papastavridis, Y. Lin, X. Zhou, X. Chen, and J.S. Dai, 2021, A Lie-theory-based dynamic parameter identification methodology for serial manipulators, IEEE-ASME Trans. Mech., 26(5): 2688-2699.
◆L. Wu, A. Muller, and J.S. Dai, 2020, A matrix method to determine infinitesimally mobile linkages with only first-order infinitesimal mobility, Mech. Mach. Theory, 148: 103776.
◆Z. Fu, J.S. Dai, K. Yang, X. Chen, and P. Lopez-Custodio, 2020, Analysis of unified error model and simulated parameters calibration for robotic machining based on Lie theory, Robot. Comput.-Integr. Manuf., 61: 101855.
◆J.S. Dai, and J. Sun, 2020, Geometrical revelation of correlated characteristics of the ray and axis order of the Plücker coordinates in line geometry, Mech. Mach. Theory, 153: 103983.
◆J. Wei, and J.S. Dai, 2019, Reconfiguration-aimed and manifold-operation based type synthesis of metamorphic parallel mechanisms with motion between 1R2T and 2R1T, Mech. Mach. Theory, 139: 66-80.
◆P. Lopez-Custodio, A. Muller, J. Rico, and J.S. Dai, 2019, A synthesis method for 1-DOF mechanisms with a cusp in the configuration space, Mech. Mach. Theory, 132: 154-175.
◆J.S. Dai, 2015, Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections, Mech. Mach. Theory, 92: 144-152.
◆J.S. Dai, 2012, Finite displacement screw operators with embedded Chasles' motion, ASME J. Mech. Robot., 4(4): 041002.
◆L. Cui, and J.S. Dai, 2010, A Darboux-frame-based formulation of spin-rolling motion of rigid objects with point contact, IEEE Trans. Robot., 26(2): 383-388.
◆J.S. Dai, Z. Huang, and H. Lipkin, 2006, Mobility of overconstrained parallel mechanisms, ASME J. Mech. Des., 128(1): 220-229.
◆J.S. Dai, 2006, An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist, Mech. Mach. Theory, 41(1): 41-52.
◆J.S. Dai, and J. Jones, 2002, Null-space construction using cofactors from a screw-algebra context, Proc. Royal Soc. Math. Phy. Eng. Sci., 458(2024): 1845-1866.
◆J.S. Dai, and J. Jones, 2001, Interrelationship between screw systems and corresponding reciprocal systems and applications, Mech. Mach. Theory, 36(5): 633-651

变胞机构:
◆R. Wang, Y. Song, and J.S. Dai, 2021, Reconfigurability of the origami-inspired integrated 8R kinematotropic metamorphic mechanism and its evolved 6R and 4R mechanisms, Mech. Mach. Theory, 161: 104245.
◆X. Chai, X. Kang, D. Gan, H. Yu, and J.S. Dai, 2021, Six novel 6R metamorphic mechanisms induced from three-series-connected Bennett linkages that vary among classical linkages, Mech. Mach. Theory, 156: 104133.
◆X. Kang, H. Feng, J.S. Dai, and H. Yu, 2020, High-order based revelation of bifurcation of novel Schatz-inspired metamorphic mechanisms using screw theory, Mech. Mach. Theory, 152: 103931.
◆R. Wang, Y. Liao, J.S. Dai, H. Chen, and G. Cai, 2019, The isomorphic design and analysis of a novel plane-space polyhedral metamorphic mechanism, Mech. Mach. Theory, 131: 152-171.
◆X. Chai, and J.S. Dai, 2019, Three novel symmetric Waldron-Bricard metamorphic and reconfigurable mechanisms and their isomerization, ASME J. Mech. Robot., 11(5): 051011.
◆X. Ma, K. Zhang, and J.S. Dai, 2018, Novel spherical-planar and Bennett-spherical 6R metamorphic linkages with reconfigurable motion branches, Mech. Mach. Theory, 128: 628-647.
◆D. Gan, J.S. Dai, J. Dias, and L. Seneviratne, 2016, Variable motion/force transmissibility of a metamorphic parallel mechanism with reconfigurable 3T and 3R motion, ASME J. Mech. Robot., 8(5): 051001.
◆F. Aimedee, G. Gogu, J.S. Dai, C. Bouzgarrou, and N. Bouton, 2016, Systematization of morphing in reconfigurable mechanisms, Mech. Mach. Theory, 96: 215-224.
◆Y. Qin, J.S. Dai, and G. Gogu, 2014, Multi-furcation in a derivative queer-square mechanism, Mech. Mach. Theory, 81: 36-53.◆S. Li, and J.S. Dai, 2012, Structure synthesis of single-driven metamorphic mechanisms based on the augmented assur groups, ASME J. Mech. Robot., 4(3): 031004.

折块机构、折纸机构:

◆G. Jia, H. Huang, H. Guo, B. Li, and J.S. Dai, 2021, Design of transformable hinged ori-block dissected from cylinders and cones, ASME J. Mech. Des., 143(9): 094501.
◆M. Salerno, K. Zhang, A. Menciassi, and J.S. Dai, 2016, A novel 4-dof origami grasper with an SMA-actuation system for minimally invasive surgery, IEEE Trans. Robot., 32(3): 484-498.
◆C. Qiu, K. Zhang, and J.S. Dai, 2016, Repelling-screw based force analysis of origami mechanisms, ASME J. Mech. Robot., 8(3): 031001.
◆K. Zhang, C. Qiu, and J.S. Dai, 2015, Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators, ASME J. Mech. Robot., 7(2): 021014.
◆J.S. Dai, and D. Caldwell, 2010, Origami-based robotic paper-and-board packaging for food industry, Trends Food Sci. Tech., 21(3): 153-157.
◆J.S. Dai, and J. Jones, 2005, Matrix representation of topological changes in metamorphic mechanisms, ASME J. Mech. Des., 127(4): 837-840.

并联机构:
◆C. Kuo, and J.S. Dai, 2021, Structure synthesis of a class of parallel manipulators with fully decoupled projective motion, ASME J. Mech. Robot., 13(3): 031011.
◆Y. Song, X. Kang, and J.S. Dai, 2020, Instantaneous mobility analysis using the twist space intersection approach for parallel mechanisms, Mech. Mach. Theory, 151: 103866.
◆X. Kang, and J.S. Dai, 2019, Relevance and transferability for parallel mechanisms with reconfigurable platforms, ASME J. Mech. Robot., 11(3): 031012.
◆X. Zhang, P. Lopez-Custodio, and J.S. Dai, 2018, Compositional submanifolds of prismatic-universal-prismatic and skewed prismatic-revolute-prismatic kinematic chains and their derived parallel mechanisms, ASME J. Mech. Robot., 10(3): 031001.
◆F. Aimedee, G. Gogu, J.S. Dai, C. Bouzgarrou, and N. Bouton, 2016, Redundant singularities versus constraint singularities in parallel mechanisms, Proc. IMechE. Part C: J. Mech. Eng. Sci., 230(3): 445-453.

控制:
◆E. Spyrakos-Papastavridis, and J.S. Dai, 2021, Flexible-joint humanoid balancing augmentation via full-state feedback variable impedance control, ASME J. Mech. Robot., 13(2): 021014.
◆Y. Zhao, Z. Song, T. Ma, and J.S. Dai, 2020, Optimization of stiffness to achieve increased bandwidth and torque resolution in nonlinear stiffness actuators, IEEE Trans. Ind. Electron., 67(4): 2925-2935.
◆E. Spyrakos-Papastavridis, P.N. Childs, and J.S. Dai, 2020, Passivity preservation for variable impedance control of compliant robots, IEEE-ASME Trans. Mechatron., 25(5): 2342-2353.
◆E. Spyrakos-Papastavridis, J.S. Dai, P.N. Childs, and N. Tsagarakis, 2018, Selective-compliance-based Lagrange model and multilevel noncollocated feedback control of a humanoid robot, ASME J. Mech. Robot., 10(3): 031009.足式机器人:
◆C. Zhang, C. Zhang, J.S. Dai, and P. Qi, 2019, Stability margin of a metamorphic quadruped robot with a twisting trunk, ASME J. Mech. Robot., 11(6): 064501.
◆C. Zhang, and J.S. Dai, 2018, Continuous static gait with twisting trunk of a metamorphic quadruped robot, Mech. Sci., 9(1): 1-14.
◆C. Zhang, and J.S. Dai, 2018, Trot gait with twisting trunk of a metamorphic quadruped robot, J. Bio. Eng., 15(6): 971-981.

灵巧手:
◆L. Cui, and J.S. Dai, 2012, Reciprocity-based singular value decomposition for inverse kinematic analysis of the metamorphic multifingered hand, ASME J. Mech. Robot., 4(3): 034502.
◆G. Wei, J.S. Dai, S. Wang, and H. Luo, 2011, Kinematic analysis and prototype of a metamorphic anthropomorphic hand with a reconfigurable palm, Int. J. Humanoid Robot., 8(3): 459-479.
◆J.S. Dai, D. Wang, and L. Cui, 2009, Orientation and workspace analysis of the multifingered metamorphic hand-metahand, IEEE Trans. Robot., 25(4): 942-947.
◆W. Yao, and J.S. Dai, 2008, Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space, ASME J. Mech. Des., 130(2): 022303.
◆J.S. Dai, and D. Wang, 2007, Geometric analysis and synthesis of the metamorphic robotic hand, ASME J. Mech. Des., 129(11): 1191-1197.

康复机器人:
◆J. Saglia, N. Tsagarakis, J.S. Dai, and D. Caldwell, 2009, Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation, Proc. Ins. Mech. Eng. Part I-J. Sys. Cont. Eng., 223(I1): 53-70.
◆J. Saglia, N. Tsagarakis, J.S. Dai, and D. Caldwell, 2009, A high-performance redundantly actuated parallel mechanism for ankle rehabilitation, Int. J. Robot. Res., 28(9): 1216-1227.
◆J. Saglia, J.S. Dai, and D. Caldwell, 2008, Geometry and kinematic analysis of a redundantly actuated parallel mechanism that eliminates singularities and improves dexterity, ASME J. Mech. Des., 130(12): 124501.
◆J.S. Dai, T. Zhao, and C. Nester, 2004, Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device, Auton. Robot., 16(2): 207-218.

软体机器人:
◆R. Wang, H. Huang, R. Xu, K. Li, and J.S. Dai, 2021, Design of a novel simulated "soft" mechanical grasper, Mech. Mach. Theory, 158: 104240.
◆Z. Song, D. Gao, Y. Zhao, and J.S. Dai, 2021, An improved Bouc-Wen model based on equitorque discretization for a load-dependent nonlinear stiffness actuator, IEEE Trans. Autom. Sci. Eng., 18(2): 840-849.
◆C. Yang, S. Geng, I. Walker, D. Branson, J. Liu, J.S. Dai, and R. Kang, 2020, Geometric constraint-based modeling and analysis of a novel continuum robot with Shape Memory Alloy initiated variable stiffness, Int. J. Robot. Res., 39(14): 1620-1634: 0278364920913929.
◆C. Sun, L. Chen, J. Liu, J.S. Dai, and R. Kang, 2020, A hybrid continuum robot based on pneumatic muscles with embedded elastic rods, Proc. IMechE. Part C: J. Mech. Eng. Sci., 234(1): 318-328.
◆L. Meng, R. Kang, D. Gan, G. Chen, L. Chen, D. Branson, and J.S. Dai, 2020, A mechanically intelligent crawling robot driven by shape memory alloy and compliant bistable mechanism, ASME J. Mech. Robot., 12(6): 061005.
◆C. Wang, S. Geng, D. Branson, C. Yang, J.S. Dai, and R. Kang, 2019, Task space-based orientability analysis and optimization of a wire-driven continuum robot, Proc. IMechE. Part C: J. Mech. Eng. Sci., 233(23-24): 7658-7668.

制造:
◆A. Niazi, J.S. Dai, S. Balabani, and L. Seneviratne, 2007, A new overhead estimation methodology: a case study in an electrical engineering company, Proc. IMechE. Part B: J. Eng. Manuf., 221(4): 699-710.
◆A. Niazi, J.S. Dai, S. Balabani, and L. Seneviratne, 2006, Product cost estimation: Technique classification and methodology review, ASME J. Manuf. Sci. Eng., 128(2): 563-575.
◆L. Yao, Z. Ye, J.S. Dai, and H. Cai, 2005, Geometric analysis and tooth profiling of a three-lobe helical rotor of the Roots blower, J. Mater. Proc. Tech., 170(1-2): 259-267.
◆R. Silversides, J.S. Dai, and L. Seneviratne, 2005, Force analysis of a vibratory bowl feeder for automatic assembly, ASME J. Mech. Des., 127(4): 637-645.